@@ -101,7 +101,7 @@ print("Row-wise Reverse Sort:\n", sorted_rows_desc)
101101sorted_cols_desc = np.sort(unsorted_2d_arr, axis = 0 )[::- 1 , :]
102102print (" Column-wise Reverse Sort:\n " , sorted_cols_desc)
103103```
104- ###✅ 4.4 Getting Sort Indices
104+ ### ✅ 4.4 Getting Sort Indices
105105``` python
106106arr = np.array([10 , 2 , 8 , 4 , 6 ])
107107
@@ -117,12 +117,12 @@ print("Sorted using indices:", arr[indices_desc])
117117
118118With NumPy, you can efficiently:
119119
120- -✅ Perform fast, vectorized mathematical operations
121- -✅ Aggregate data with built-in statistical functions
122- -✅ Sort and index arrays flexibly, even in multiple dimensions
120+ - ✅ Perform fast, vectorized mathematical operations
121+ - ✅ Aggregate data with built-in statistical functions
122+ - ✅ Sort and index arrays flexibly, even in multiple dimensions
123123
124124### 💡 Key Takeaways:
125125
126- -NumPy enables concise and efficient array operations.
127- -Aggregation functions are powerful tools for summarizing data.
128- -Sorting tools include standard sorting, reverse sorting, and index tracking.
126+ - NumPy enables concise and efficient array operations.
127+ - Aggregation functions are powerful tools for summarizing data.
128+ - Sorting tools include standard sorting, reverse sorting, and index tracking.
0 commit comments